Abstract
Mutations in the NPHS2 gene, encoding podocin, are a major cause of autosomal-recessive steroid-resistant nephrotic syndrome (SRNS) in childhood, accounting for up to 30% of sporadic and 20-40% of familial cases. Among 22 Greek children with a clinical diagnosis of SRNS, mutation analysis was performed in all eight NPHS2 gene exons, using denaturing gradient gel electrophoresis and DNA sequencing. The frequency of all nucleotide variations found in patients was also evaluated in 100 unrelated samples (18-30 years) with no known history of nephrotic disease. Three pathogenic genotypes (R138Q/R138Q, R229Q/A295T, and R168H/R168H) accounted for 3/14 (21%) of sporadic patients; the A295T mutation in exon 8 (c.883G>A) is novel and predicted in silico to be pathogenic. Among the familial cases, a single patient was heterozygous for R229Q. Several known polymorphisms were found, including the in cis variants IVS3-46C>T plus IVS3-21C>T, IVS7+7A>G A and exonic variants S96S (c.288C>T), A318A (c.954T>C), and L346L (c.1038A>G), with allele frequencies comparable to those in other populations. A novel substitution (IVS3-17C>T) was found in two related patients, but in no controls. In conclusion, podocin mutations do not appear to be a major cause of SRNS in Greek children, although the study cohort was small. However, NPHS2 gene analysis could still be considered in Greek SRNS patients to support appropriate management. The present study also contributes potentially useful observations for the clinical management of SRNS patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.