Abstract
Aqualysin I is an alkaline serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extreme thermophile [Matsuzawa, H., Hamaoki, M. & Ohta, T. (1983) Agric. Biol. Chem. 47, 25-28]. The gene encoding aqualysin I was cloned into Escherichia coli using synthetic oligodeoxyribonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of aqualysin I, deduced from the nucleotide sequence, agreed with the NH2-terminal sequence previously reported and the determined amino acid sequences, including the COOH-terminal sequence, of the tryptic peptides derived from aqualysin I. Aqualysin I comprised 281 amino acid residues and its molecular mass was determined to be 28,350. On alignment of the whole amino acid sequence, aqualysin I showed high sequence homology with the subtilisin-type serine proteases, and 43% identity with proteinase K, 37-39% with subtilisins and 34% with thermitase. Extremely high sequence identity was observed in the regions containing the active-site residues, corresponding to Asp32, His64 and Ser221 of subtilisin BPN'. The nucleotide sequence of the cloned DNA (1105 nucleotides) revealed that it contains the entire gene encoding aqualysin I and one open reading frame without a translational stop codon. Therefore, aqualysin I was considered to be produced as a large precursor, which contains a NH2-terminal portion, the protease and a COOH-terminal portion. The G + C content of the coding region for aqualysin I was 64.6%, which is lower than those of other Thermus genes (68-74%). The codon usage in the aqualysin I gene was rather random in comparison with that in other Thermus genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.