Abstract

The nucleotide sequence of a region of the Escherichia coli chromosome encoding part of a cluster of genes involved in the biosynthesis of the iron chelator enterobactin has been determined. Four closely linked open reading frames, corresponding to the coding regions of entE (carboxy-terminal 144 amino acids), entB (32,554 daltons), entA (26,249 daltons), and an unidentified gene (P15) encoding a 14,970-dalton protein, were found. The lack of intergenic sequences and promoterlike elements suggests that these genes form part of the same transcription unit. We report the purification to homogeneity of the entA product, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. It is an octamer of native molecular weight 210,000; the amino-terminal amino acid sequence confirmed the entA coding region. No isochorismate synthase activity was associated with this polypeptide. This finding leads to the conclusion that the recent suggestion (M. S. Nahlik, T. P. Fleming, and M. A. McIntosh, J. Bacteriol. 169:4163-4170, 1987) that 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase and isochorismate synthase activities reside on a single 26,000-dalton bifunctional enzyme is incorrect, even though the entA and entC mutations map to the same genetic locus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.