Abstract

The entire nucleotide sequence of the rsaA gene, encoding the paracrystalline surface (S) layer protein (RsaA) of Caulobacter crescentus CB15A, was determined. The rsaA gene encoded a protein of 1026 amino acids, with a predicted molecular weight of 98,132. Protease cleavage of mature RsaA protein and amino acid sequencing of retrievable peptides yielded two peptides: one aligned with a region approximately two-thirds the way into the predicted amino acid sequence and the second peptide corresponded to the predicted carboxy terminus. Thus, no cleavage processing of the carboxy portion of the RsaA protein occurred during export, and with the exception of the removal of the initial methionine residue, the protein was not processed by cleavage to produce the mature protein. The predicted RsaA amino acid profile was unusual, with small neutral residues predominating. Excepting aspartate, charged amino acids were in relatively low proportion, resulting in an especially acidic protein, with a predicted pI of 3.46. As with most other sequenced S-layer proteins, RsaA contained no cysteine residues. A homology scan of the Swiss Protein Bank 17 produced no close matches to the predicted RsaA sequence. However, RsaA protein shared measurable homology with some exported proteins of other bacteria, including the hemolysins. Of particular interest was a specific region of the RsaA protein that was homologous to the repeat regions of glycine and aspartate residues found in several proteases and hemolysins. These repeats are implicated in the binding of calcium for proper structure and biological activity of these proteins. Those present in the RsaA protein may perform a similar function, since S-layer assembly and surface attachment requires calcium. RsaA protein also shared some homology with 10 other S-layer proteins, with the Campylobacter fetus S-layer protein scoring highest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.