Abstract

Permeabilized PtK 1 cells continue to undergo anaphase chromosome movements provided MgATP is included in the lysis medium. However, chromosome-to-pole movement (anaphase A) and spindle elongation (anaphase B) differ with respect to nucleotide requirements. The rate of anaphase B depends on the concentration of ATP in the lysis medium; two-thirds the maximal rate is observed in 0.2 mM ATP. However, other nucleotides, such as ITP, CTP and GTP, cannot substitute for ATP. Spindle elongation is blocked by the addition of nonhydrolyzable ATP analogs, ADP, AMP and inhibitors such as vanadate, the magnesium chelator EDTA and sulfhydryl reagents. Anaphase A does not require exogenous ATP and is unaffected by these inhibitors. These results are consistent with “dynein-like” ATPase involvement during spindle elongation, and rule out the possibility of tubulin-dynein and actomyosin mechanochemistry during anaphase A. I suggest that chromosome-to-pole movement involves the collapse of an elastic component in the spindle. Force generation could be provided by microtubule depolymerization or by the contraction of a nonmicrotubule microtrabecular lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.