Abstract

Advances in affordable transcriptome sequencing combined with better exon and gene prediction has motivated many to compare transcription across the tree of life. We develop a mathematical framework to calculate complexity and compare transcript models. Structural features, i.e. intron retention (IR), donor/acceptor site variation, alternative exon cassettes, alternative 5'/3' UTRs, are compared and the distance between transcript models is calculated with nucleotide level precision. All metrics are implemented in a PyPi package, TranDand output can be used to summarize splicing patterns for a transcriptome (1GTF) and between transcriptomes (2GTF). TranD output enables quantitative comparisons between: annotations augmented by empirical RNA-seq data and the original transcript models; transcript model prediction tools for longread RNA-seq (e.g. FLAIR versus Isoseq3); alternate annotations for a species (e.g. RefSeq vs Ensembl); and between closely related species. In C. elegans, Z. mays, D. melanogaster, D. simulans and H. sapiens, alternative exons were observed more frequently in combination with an alternative donor/acceptor than alone. Transcript models in RefSeq and Ensembl are linked and both have unique transcript models with empirical support. D.melanogaster and D.simulans, share many transcript models and long-read RNAseq data suggests that both species are under-annotated. We recommend combined references.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call