Abstract

Enterococcus hirae V-ATPase, in contrast to most V-type ATPases, is resistant to N-ethylmaleimide (NEM). Alignment of the amino acid sequences of NtpA suggests that the NEM-sensitive Cys of V-type ATPases is replaced by Ala in E. hirae V-ATPase. Consistent with this prediction, the V-ATPase became sensitive upon substitution of the Ala with Cys. The three-dimensional structure of the NtpB subunit of V-ATPase was modeled based on the structure of the corresponding subunit (alpha subunit) of bovine F(1)-ATPase by homology modeling. Overall, the 3D structure of the subunit resembled that of alpha subunit of bovine F(1)-ATPase. The NtpB subunit, which lacks the P-loop consensus sequence for nucleotide binding, was predicted to bind a nucleotide at the modeled nucleotide-binding site. Experimental data supported the prediction that the E. hirae V-ATPase had about six nucleotide-binding sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.