Abstract

Genomic variations have been acclaimed as among the key players in understanding the biological mechanisms behind migration, evolution, and adaptation to extreme conditions. Due to stochastic evolutionary forces, the frequency of polymorphisms is affected by changes in the frequency of nearby polymorphisms in the same DNA sample, making them connected in terms of evolution. This article presents all the ingredients to understand the cumulative effects and complex behaviors of genetic variations in the human mitochondrial genome by analyzing co-occurrence networks of nucleotides, and shows key results obtained from such analyses. The article emphasizes recent investigations of these co-occurrence networks, describing the role of interactions between nucleotides in fundamental processes of human migration and viral evolution. The corresponding co-mutation-based genetic networks revealed genetic signatures of human adaptation in extreme environments. This article provides the methods of constructing such networks in detail, along with their graph-theoretical properties, and applications of the genomic networks in understanding the role of nucleotide co-evolution in evolution of the whole genome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call