Abstract

After the initiation of the explosion of core-collapse supernovae, neutrinos emitted from the nascent neutron star drive a supersonic baryonic outflow. This neutrino-driven wind interacts with the more slowly moving, earlier supernova ejecta forming a wind termination shock (or reverse shock), which changes the local wind conditions and their evolution. Important nucleosynthesis processes (alpha-process, charged-particle reactions, r-process, and vp-process) occur or might occur in this environment. The nucleosynthesis depends on the long-time evolution of density, temperature, and expansion velocity. Here we present two-dimensional hydrodynamical simulations with an approximate description of neutrino-transport effects, which for the first time follow the post-bounce accretion, onset of the explosion, wind formation, and the wind expansion through the collision with the preceding supernova ejecta. Our results demonstrate that the anisotropic ejecta distribution has a great impact on the position of the reverse shock, the wind profile, and the long-time evolution. This suggests that hydrodynamic instabilities after core bounce and the consequential asymmetries may have important effects on the nucleosynthesis-relevant conditions in the neutrino-heated baryonic mass flow from proto-neutron stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.