Abstract

The structural and nucleosynthetic evolution of 3, 4, 5, 6 and \mass{7} stars with two metallicities ($Z = 0.005$ and 0.02) has been computed in detail, from the early pre-main sequence phase up to the thermally pulsing (TP) AGB phase or the onset of off-center carbon burning. Typically 10 to 20 thermal pulses have been followed for each TP-AGB object. This homogeneous and quite large set of models allows us to present an overview of the thermal pulse properties as well as of the nucleosynthesis accompanying the TP-AGB phase of intermediate-mass stars. More specifically, after a brief description of the previous evolutionary stages, predictions are given for the isotopic ratios involving C, N, O, Ne, Mg, Al and Si. Also the surface abundances of 7Li, 19F and 23Na are reported. As the asymptotic phase of the thermal pulses has been reached for each star, we also indicate how these abundances will probably evolve until the stars completely loose their envelope, by including the evolution of the nucleosynthesis itself. This article, in its paper form, has been shortened at a level of roughly 60 \% as required by directives coming from the A\&A editors. The complete article (50 pages containing 37 figures) is only available in electronic form at http://gag.observ-gr.fr/liens/starevol/evol.html

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.