Abstract

We present the first calculations to follow the evolution of all stable nuclei and their radioactive progeni- tors in stellar models computed from the onset of central hydrogen burning through explosion as Type II supernovae. Calculations are performed for Population I stars of 15, 19, 20, 21, and 25 Musing the most recently available experimental and theoretical nuclear data, revised opacity tables, neutrino losses, and weak interaction rates and taking into account mass loss due to stellar winds. A novel '' adaptive '' reaction net- work is employed with a variable number of nuclei (adjusted each time step) ranging from � 700 on the main sequence to e2200 during the explosion. The network includes, at any given time, all relevant isotopes from hydrogen through polonium (Z ¼ 84). Even the limited grid of stellar masses studied suggests that overall good agreement can be achieved with the solar abundances of nuclei between 16 O and 90 Zr. Interesting dis- crepancies are seen in the 20 Mmodel and (so far, only in that model) are a consequence of the merging of the oxygen, neon, and carbon shells about a day prior to core collapse. We find that, in some stars, most of the '' p-process '' nuclei can be produced in the convective oxygen-burning shell moments prior to collapse; in others, they are made only in the explosion. Serious deficiencies still exist in all cases for the p-process isotopes of Ru and Mo. Subject headings: nuclear reactions, nucleosynthesis, abundances — stars: evolution — supernovae: general On-line material: machine-readable tables

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.