Abstract

It is shown that certain anomalies connected with the primordial abundances of light nuclei may be resolved if it is assumed that the Universe oscillates between phases of finite densities. Since general relativity does not produce bouncing models of the Universe, such models are obtained through the introduction of a negative energy scalar field of zero rest mass. It is shown that all the relevant parameters of the dynamics of the model and the nucleosynthesis in it are determined by observations and that a self-consistent picture emerges. The model is capable of admitting more than three neutrino flavours without an embarrassingly high primordial helium content. It is also shown that the calculations could be adapted to described production of light nuclei in compact massive bouncing objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.