Abstract
To understand how nuclear processes involving DNA are regulated, knowledge of the determinants of chromatin condensation is required. From recent structural studies it has been concluded that the formation of the 30-nm chromatin fiber does not require the linker histone. Here, by comparing the linker histone-dependent compaction of long, reconstituted nucleosome arrays with different nucleosome repeat lengths (NRLs), 167 and 197 bp, we establish that the compaction behavior is both NRL- and linker histone-dependent. Only the 197-bp NRL array can form 30-nm higher-order chromatin structure. Importantly for understanding the regulation of compaction, this array shows a cooperative linker histone-dependent compaction. The 167-bp NRL array displays a limited linker histone-dependent compaction, resulting in a thinner and topologically different fiber. These observations provide an explanation for the distribution of NRLs found in nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.