Abstract

Emerging evidence has demonstrated that nucleoporins (Nups) play a pivotal role in cell-type-specific gene regulation, but how they control the expression and activity of ion channel genes in the heart remains unclear. Here, we show that Nup50, which is localized in the nucleus of cardiomyocytes, selectively induces an increase in the transcription and translation of Kcna4. The Kcna4 gene encodes a K+ voltage-gated channel of shaker-related subfamily member 4 and is essential for regulating the action potential in cardiac membranes. Using immunofluorescence imaging, luciferase assays and chromatin immunoprecipitation assays, we identified that the direct binding of the FG-repeat domain within Nup50 to the proximity of the Kcna4 promoter was required to activate the transcription and subsequent translation of Kcna4. Functionally, Nup50 overexpression increased the currents of KCNA4-encoded Ito,s channels, and reverse knockdown of Nup50 resulted in a remarkable decrease in the amplitude of Ito,s currents in cardiomyocytes. Moreover, a positive correlation between Nup50 and Kcna4 mRNA and protein expression was observed in heart tissues subjected to ischemic insults. These findings provide insights into the homeostatic control of cardiac electrophysiology through Nup-mediated regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call