Abstract

A brief overview of the development of direct substitution of the hydroxyl (OH) group of alcohols in our research group is presented. By applying a Bronsted acid, an intramolecular substitution of the OH group in stereogenic alcohols with chirality transfer was achieved. Noteworthy, the intramolecular substitution has a wide scope in respect to both the nucleophile and also the nucleofuge. A mechanistic study by both experiments and DFT calculations revealed a unique reaction pathway in which the Bronsted acid operates in a bifunctional manner to promote an SN2-type reaction mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.