Abstract

The reactions of a nucleophilic dianion with a series of activated aryl bromides were studied in the gas phase. Nucleophilic aromatic substitution (SNAr) as well as proton transfer reactions were observed. Rate constants and branching ratios were determined for all the reactions and the experimental data are supported by ab initio calculations. Reactions with bis-trifluoromethylbromobenzenes give only SNAr reactions and the rate constants follow the expected pattern, with substituents at the ortho and para positions having the greatest impact. Reactions of polyfluorobromobenzenes give a mix of proton transfer (when possible) and SNAr, with both bromide and fluoride acting as leaving groups. The latter is much less thermodynamically favorable but is the dominant pathway in each case. The selectivity of the reactions indicate that the products are determined early on the potential energy surface, before there is significant cleavage of the bond to the leaving group-the reaction is potentially directed by the initial formation of a hydrogen bond with the arene. The computational data also suggest that hydrogen bonding in the product ion-ion complexes can stabilize the system until there is sufficient charge separation to use the internal Coulomb repulsion to drive the reactions to products. Overall, the results highlight (1) the ability of multiply-charged systems to efficiently funnel their Coulomb repulsion into reaction processes that are intrinsically unfavorable, and (2) the high degree of selectivity that can be attained even in systems with multiple, low-barrier pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call