Abstract

Addition of amine nucleophiles to acetonitrile solutions of the OsIV anilido complex TpOs(NHPh)Cl2 (1) [Tp = hydrotris(1-pyrazolyl)borate] gives products with derivatized anilido ligands, i.e., TpOs[NH-p-C6H4(N(CH2)5)]Cl2 (2) from piperidine and TpOs[NH-p-C6H4N(CH2)4]Cl2 (3) from pyrrolidine. These materials are formed in approximately 30% yield under anaerobic conditions, together with approximately 60% yields of the OsIII aniline complex TpOs(NH2Ph)Cl2 (5). Formation of the para-substituted materials 2 or 3 from 1 involves oxidative removal of two hydrogen atoms (two H+ and two e-). The oxidation can be accomplished by 1, forming 5, or by O2. Related reactions have been observed with other amines and with the 2-naphthylamido derivative, which gives an ortho-substituted product. Kinetic studies indicate an addition-elimination mechanism involving initial attack of the amine nucleophile on the anilido ligand. These are unusual examples of nucleophilic aromatic substitution of hydrogen. Ab initio calculations on 1 show that the LUMO has significant density at the ortho and para positions of the anilido ligand, resembling the LUMO of nitrobenzene. By analogy with nucleophilic aromatic substitution, 2 is quantitatively formed from piperidine and the p-chloroanilide TpOs(NH-p-C6H4Cl)Cl2 (7). Binding the anilide ligands to an oxidizing OsIV center thus causes a remarkable umpolung or inversion of chemical character from a typically electron-rich anilido to an electron-deficient aromatic functionality. This occurs because of the coupling of redox changes at the TpOsIV center with bond formation at the coordinated ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call