Abstract

The multicomponent reaction-directed self-assembled hydrogels offer the opportunities to fabricate materials with ubiquitous properties which sometimes are not possible to generate from single components. Therefore, multicomponent-derived hydrogels have enormous applications in biomedical fields, and the number of such systems is increasing day by day. Herein, the multicomponent self-assembly techniques have been employed to develop a biomimetic low-molecular-weight G-quadruplex hydrogel under physiological conditions. The bioconjugation of guanosine, 4-formylphenylboronic acid, and cytosine-functionalized nucleopeptide (NP) is important to generate the multicomponent self-assembled dynamic imino-boronate ester-mediated bioconjugated G-quadruplex hydrogels. Using thioflavin T fluorescence assay, powder X-ray diffraction, and circular dichroism spectroscopic techniques, we confirm the existence of a G-quartet-like structure as the key parameter for the formation of nanofibrillar hydrogels. The multicomponent self-assembled G-quadruplex hydrogel possesses excellent inherent antibacterial activity against a broad range of bacterial species. The in vitro cytocompatibility of the synthesized hydrogel was evaluated on MCF-7 and HEK 293T cell lines to study the biocompatibility of the hydrogel. The proposed injectable, biocompatible, and NP-coupled G-quadruplex hydrogel with inherent antibacterial efficiency holds promising importance to prevent localized bacterial infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.