Abstract

We study the instabilities of quark matter in the framework of a generalized Nambu--Jona-Lasinio model, in order to explore possible competition between three-quark clustering to form nucleons and diquark formation leading to color superconductivity. Nucleon and $\Delta$ solutions are obtained for the relativistic Faddeev equation at finite density and their binding energies are compared with those for the scalar and axial-vector diquarks found from the Bethe-Salpeter equation. In a model with interactions in both scalar and axial diquark channels, bound nucleons exist up to nuclear matter density. However, except at densities below about a quarter of that of nuclear matter, we find that scalar diquark formation is energetically favored. This raises the question of whether a realistic phase diagram of baryonic matter can be obtained from any model which does not incorporate color confinement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.