Abstract

The high frequency and ultrasmall mass of graphene make it an ideal material for ultrasensitive mass sensing. In this article, based on the all-optical technique, we propose a scheme of an optical mass sensor to weigh the mass of a single atom or molecule via a doubly clamped Z-shaped graphene nanoribbon (GNR). We use the detection of shifts in the resonance frequency of the Z-shaped GNR to determine the mass of an external particle landing on the GNR. The highly sensitive mass sensor proposed here can weigh particles down to the yoctogram and may eventually be enable to realize the mass measurement of nucleons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.