Abstract
A reliable determination of the pole parameters and residues of nucleon resonances is notoriously challenging, given the required analytic continuation into the complex plane. We provide a comprehensive analysis of such resonance parameters accessible with Roy–Steiner equations for pion–nucleon scattering—a set of partial-wave dispersion relations that combines the constraints from analyticity, unitarity, and crossing symmetry—most prominently of the Δ(1232) resonance. Further, we study the Roper, N(1440), resonance, which lies beyond the strict domain of validity, in comparison to Padé approximants, comment on the role of subthreshold singularities in the S-wave, and determine the residues of the f0(500), ρ(770), and f0(980) resonances in the t-channel process ππ→N¯N. The latter allows us to test—for the first time fully model independently in terms of the respective residues—universality of the ρ(770) couplings and the Goldberger–Treiman relation expected if the scalars behaved as dilatons, in both cases revealing large deviations from the narrow-resonance limit.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.