Abstract

We calculate the nucleon parameters in nuclear matter using the QCD sum rules approach in Fermi gas approximation. Terms up to 1/q^2 in the operator product expansion (OPE) are taken into account. The higher moments of the nucleon structure functions are included. The complete set of the nucleon expectation values of the four-quark operators is employed. Earlier the lack of information on these values has been the main obstacle for the further development of the approach. We show that the four-quark condensates provide the corrections of the order 20% to the results obtained in the leading orders of the OPE. This is consistent with the assumption about the convergence of the OPE. The nucleon vector self-energy \Sigma_v and the nucleon effective mass m^* are expressed in terms of the in-medium values of QCD condensates. The numerical results for these parameters at the saturation value of the density agree with those obtained by the methods of nuclear physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call