Abstract
Poincare' covariant Faddeev equations for the nucleon and Delta are solved to illustrate that an internally consistent description in terms of confined-quark and nonpointlike confined-diquark-correlations can be obtained. pi N-loop induced self-energy corrections to the nucleon's mass are analysed and shown to be independent of whether a pseudoscalar or pseudovector coupling is used. Phenomenological constraints suggest that this self-energy correction reduces the nucleon's mass by up to several hundred MeV. That effect does not qualitatively alter the picture, suggested by the Faddeev equation, that baryons are quark-diquark composites. However, neglecting the pi-loops leads to a quantitative overestimate of the nucleon's axial-vector diquark component.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.