Abstract

The nucleolus is a compartmentalized organelle in eukaryotic cells known to form during embryogenesis, yet how its layered architecture is transformed from homogenous precursor bodies is unclear, and any impacts of this formation on embryonic cell fate determination remain unknown. Here, we demonstrate that lncRNA LoNA tethers granular-component-enriched NPM1 to dense-fibrillar-component-enriched FBL and drives the formation of compartmentalized nucleolus via facilitating liquid-liquid phase separation of those two nucleolar proteins. Phenotypically, LoNA-deficient embryos show developmental arrest at the two-cell (2C) stage. Mechanistically, we demonstrate that LoNA deficiency leads to nucleolar formation failure, resulting in mislocalization and acetylation of NPM1 in the nucleoplasm. Acetylated NPM1 recruits and guides PRC2 complex to 2C genes, where PRC2 complex trimethylates H3K27, leading to transcriptional repression of these genes. Collectively, our findings reveal that lncRNA is required for the establishment of nucleolar structure, and this process has an impact on two-cell embryonic development via 2C transcriptional activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.