Abstract
Wild-type human hepatitis B virus (HBV) exhibits selective export of virions containing mature genomes. In contrast, changing an isoleucine to a leucine at amino acid 97 (I97L) of the HBV core antigen (HBcAg) causes it to release immature genomes. To elucidate the structure-function relationship of HBcAg at amino acid 97, we systematically replaced the isoleucine residue at this position with 18 other amino acids via mutagenesis. Twelve of the 18 mutants exhibited no significant phenotype, while five new mutants displayed strong phenotypes. The I97D mutant had a near lethal phenotype, the I97P mutant exhibited a significantly reduced level of virion secretion, and the I97G mutant lacked the full-length relaxed circular form of viral DNA. The tip of the spike of the capsid particle is known to contain a predominant B-cell epitope. However, the recognition of this exposed epitope by an anti-HBc antibody appeared to be affected by the I97E mutation or by histidine tagging at the C terminus of mutant HBcAg, which is presumably in the capsid interior. Surprisingly, the nuclear HBcAg of mutants I97E and I97W, produced from either a replicon or an expression vector, was found to be colocalized with nucleolin and B23 at a frequency of nearly 100% by confocal immunofluorescence microscopy. In contrast, this colocalization occurred with wild-type HBcAg only to a limited extent. We also noted that nucleolin-colocalizing cells were often binucleated or apoptotic, suggesting that the presence of HBcAg in the nucleolus may perturb cytokinesis. The mechanism of this phenomenon and its potential involvement in liver pathogenesis are discussed. To our knowledge, this is the first report of nucleolar HBcAg in culture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.