Abstract

Pathogen type 3 secretion systems (T3SS) manipulate host cell pathways by directly delivering effector proteins into host cells. In Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne diarrheal disease, we showed that a T3SS effector, VgpA, localizes to the host cell nucleolus where it binds Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2). An amino acid substitution in VgpA (VgpAL10A ) did not alter its translocation to the nucleus but abolished the effector's capacity to interact with EBP2. VgpA-EBP2 interaction led to the re-localization of c-Myc to the nucleolus and increased cellular rRNA expression and proliferation of cultured cells. The VgpA-EBP2 interaction elevated EBP2's affinity for c-Myc and prolonged the oncoprotein's half-life. Studies in infant rabbits demonstrated that VgpA is translocated into intestinal epithelial cells, where it interacts with EBP2 and leads to nucleolar re-localization of c-Myc. Moreover, the in vivo VgpA-EBP2 interaction during infection led to proliferation of intestinal cells and heightened V.parahaemolyticus' colonization and virulence. These observations suggest that direct effector stimulation of a c-Myc controlled host cell growth program can contribute to pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.