Abstract

Transcriptional regulation of gene expression is thought to play a pivotal role in activity-dependent neuronal differentiation and circuit formation. Here, we investigated the role of histone deacetylase 9 (HDAC9), which regulates transcription by histone modification, in the development of neocortical neurons. The translocation of HDAC9 from nucleus to cytoplasm was induced by an increase of spontaneous firing activity in cultured mouse cortical neurons. This nucleocytoplasmic translocation was also observed in postnatal development in vivo. The translocation-induced gene expression and cellular morphology was further examined by introducing an HDAC9 mutant that disrupts the nucleocytoplasmic translocation. Expression of c-fos, an immediately-early gene, was suppressed in the mutant-transfected cells regardless of neural activity. Moreover, the introduction of the mutant decreased the total length of dendritic branches, whereas knockdown of HDAC9 promoted dendritic growth. These findings indicate that chromatin remodeling with nucleocytoplasmic translocation of HDAC9 regulates activity-dependent gene expression and dendritic growth in developing cortical neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.