Abstract

There is growing evidence of evolutionary genome plasticity. The evolution of repetitive DNA elements, the major components of most eukaryotic genomes, involves the amplification of various classes of mobile genetic elements, the expansion of satellite DNA, the transfer of fragments or entire organellar genomes and may have connections with viruses. In addition to various repetitive DNA elements, a plethora of large and small RNAs migrate within and between cells during individual development as well as during evolution and contribute to changes of genome structure and function. Such migration of DNA and RNA molecules often results in horizontal gene transfer, thus shaping the whole genomic network of interconnected species. Here, we propose that a high evolutionary dynamism of repetitive genome components is often related to the migration/movement of DNA or RNA molecules. We speculate that the cytoplasm is probably an ideal compartment for such evolutionary experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.