Abstract

Nucleic acid therapeutics, including siRNAs, miRNAs/antimiRs, gRNAs and ASO, represent innovative and highly promising molecules for the safe treatment of a wide range of pathologies. The efficiency of systemic treatments is impeded by 1) the need to overcome physical and functional barriers in the organism, and 2) to accumulate in the intracellular active site at therapeutic concentrations. Although oligonucleotides either as modified naked molecules or complexed with delivery carriers have revealed to be effectively delivered to the affected target cells, this is restricted to topic treatments or to a few highly vascularized tissues. Therefore, the development of effective strategies for therapeutic nucleic acid selective delivery to target tissues is of primary importance in order to reduce the occurrence of undesired effects on non-target healthy tissues and to permit their translation to clinic. Due to their high affinity for specific ligands, high tissue penetration and chemical flexibility, short single-stranded nucleic acid aptamers are emerging as very attractive carriers for various therapeutic oligonucleotides. Yet, different aptamer-based bioconjugates, able to provide accumulation into target tissues, as well as efficient processing of therapeutic oligonucleotides, have been developed. In this respect, nucleic acid aptamer-mediated delivery strategies represent a powerful approach able to increase the therapeutic efficacy also highly reducing the overall toxicity. In this review, we will summarize recent progress in the field and discuss achieved objectives and optimization of aptamers as delivery carriers of short oligonucleotides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.