Abstract

The microbial profile of cheese is a primary determinant of cheese quality. Microorganisms can contribute to aroma and taste defects, form biogenic amines, cause gas and secondary fermentation defects, and can contribute to cheese pinking and mineral deposition issues. These defects may be as a result of seasonality and the variability in the composition of the milk supplied, variations in cheese processing parameters, as well as the nature and number of the non-starter microorganisms which come from the milk or other environmental sources. Such defects can be responsible for production and product recall costs and thus represent a significant economic burden for the dairy industry worldwide. Traditional non-molecular approaches are often considered biased and have inherently slow turnaround times. Molecular techniques can provide early and rapid detection of defects that result from the presence of specific spoilage microbes and, ultimately, assist in enhancing cheese quality and reducing costs. Here we review the DNA-based methods that are available to detect/quantify spoilage bacteria, and relevant metabolic pathways in cheeses and, in the process, highlight how these strategies can be employed to improve cheese quality and reduce the associated economic burden on cheese processors.

Highlights

  • There are approximately 1000 varieties of cheeses, corresponding to nine different cheese families (Cheddar, Dutch, Swiss, Iberian, Italian, Balkan, Middle Eastern, Mould-ripened, and Smear-ripened) produced worldwide (Sandine and Elliker, 1970; Fox and McSweeney, 2004; Fox et al, 2004)

  • Control cheeses and cheeses manufactured with L. helveticus did not suffer from crystal formation This study suggests that accelerated maturation at higher than normal temperatures may accelerate NSLAB growth, and D(−)-lactate formation and calcium lactate crystal (CLC) (Chou et al, 2003)

  • PERSPECTIVES Traditional culture-based approaches to detect bacteria in cheeses are being replaced by culture-independent molecular methods

Read more

Summary

INTRODUCTION

There are approximately 1000 varieties of cheeses, corresponding to nine different cheese families (Cheddar, Dutch, Swiss, Iberian, Italian, Balkan, Middle Eastern, Mould-ripened, and Smear-ripened) produced worldwide (Sandine and Elliker, 1970; Fox and McSweeney, 2004; Fox et al, 2004). Late gas production In many instances this phenomenon is due to the action of PAB which ferment lactose and/or lactate to propionic acid This gives the characteristic “nutty” taste and results in the presence of the characteristic “eyes” associated with Swiss type cheeses (Sheehan et al, 2008). In these cases selected strains of PAB are purposely added along with the starter culture to produce different flavor profiles.

Method
Findings
CONCLUSIONS AND FUTURE PERSPECTIVES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.