Abstract

We developed a simple protocol for high-yielding synthesis of conjugates of a deuterated dihydro-N,N,N',N'-tetramethylrhodamine (F*) with oligodeoxyribonucleotides and a 2'-OMe RNA (a representative nuclease-resistant, chemically modified oligonucleotide) using easily accessible starting materials including NaBD4 and conjugates of oligonucleotides with N,N,N',N'-tetramethylrhodamine (F). These compounds were found to be stable in air and insensitive to light at 525, 635 and 650 nm, whereas slow activation occurs upon their exposure to 470 nm light. However, at the conditions of the templated reaction, in the presence of a target nucleic acid and a photocatalyst based on the eosin structure, the F* is oxidized forming fluorescent F. This reaction is >30-fold faster than the background reaction in the absence of the template. Moreover, the presence of a single mismatch in the target nucleic acid slows down the templated reaction by eightfold. These activatable dyes can potentially find applications as nucleic acid-specific probes for super-resolution imaging in live cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.