Abstract

During its life cycle, the flat worm Schistosoma mansoni is exposed to diverse environmental conditions and changes its morphological form. Each change calls for distinct patterns of gene expression. In order to understand the regulation of gene expression, it is necessary to identify regulatory elements in the promoter region of genes, and DNA transacting factors that control transcription. Zinc finger protein domains are responsible for transcription regulation of diverse genes in a wide range of organisms and are also involved in the promotion of protein–protein interactions. A transcript homologous to zinc finger gene sequences was isolated from a S. mansoni adult worm cDNA library and named SmZF1. It codes for a protein of 164 amino acids presenting three C 2H 2 type zinc finger motifs. The recombinant SmZF1 protein was expressed and used on electrophoretic mobility shift assays to investigate the binding specificity of SmZF1 for DNA and RNA oligonucleotides. Our results demonstrated that SmZF1 binds both ds and ss DNA oligonucleotides, with an apparent preference for the specific D1-3DNA oligonucleotide, and also binds RNA oligonucleotides with lower affinity. Although we found that SmZF1 recognises DNA and RNA oligonucleotides not containing putative target sites, SmZF1 binds preferentially to sequence specific sites. Furthermore, unrelated oligonucleotides are not able to abolish this interaction. In silico studies identified putative SmZF1 binding sites in the complete genome of three model organisms and in partial genome sequences of S. mansoni. Six Drosophila genes presented these binding sites in their promoter region, indicating that they might be controlled by transcription factors containing zinc fingers motifs. Taken together, these results suggest that SmZF1 acts as a putative transcription factor of S. mansoni.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.