Abstract

DNA crosslinking agents such as cisplatin and related platinum(II) analogs are effective drugs to treat solid tumors. However, these therapeutics can cause high toxicity in the body, and tumors can develop resistance to them. To develop less toxic and more effective DNA crosslinkers, medicinal chemists have focused on tuning the ligands in square planar platinum(II) complexes to modulate their bioavailability, targeted cell penetration, and DNA binding rates. Unfortunately, linking in vitro DNA binding capacity of DNA crosslinkers with their in vivo efficacy has proven challenging. Here we report an electrochemical biosensor strategy that allows the study of platinum(II)-DNA binding in real time. Our biosensors contain a purine-rich deoxynucleotide sequence, T6 (AG)10 , modified with a 5' hexylthiol linker for easy self-assembly onto gold electrodes. The 3' terminus is functionalized with the redox reporter methylene blue. Electron transfer from methylene blue to the sensor is a function of platinum(II) compound concentration and reaction time. Using these biosensors, we resolve DNA binding mechanisms including monovalent and bivalent binding, as well as base stacking. Our approach can measure DNA binding kinetics in buffers and in 50 % serum, offering a single-step, real-time approach to screen therapeutic compounds during drug development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.