Abstract

Blood transfusions are fundamental to clinical procedures; however, many people worldwide cannot access safe blood. Blood product safety must be essential in each country’s national health policies. Several aspects of the blood donation process are carefully performed, including laboratory testing comprising blood type determination, antigen-antibody analyses, and nucleic acid amplification testing (NAT); however, NAT is not mandatory in all countries. The traditional screening method is based on antigen-antibody binding techniques, such as ELISA (enzyme-linked immunosorbent assay), with high sensitivity and specificity. Nevertheless, these methods have a seroconversion window period (WP), in which antigen-antibody testing cannot detect the pathogen and has not caused any symptoms yet. NAT is a sensitive molecular method based on viral nucleic acid amplification and detection. Moreover, its use in blood banks is increasing worldwide because it narrows the window period. For example, Huang et al. in 2017 reported the detection of 22 samples reactive only by nucleic acid testing for either HIV, HBV, or HCV compared with ELISA. The present article shows how blood safety has improved by implementing NAT as a routine method for viral nucleic acid detection, highlighting the importance of this technique as evidenced by the findings presented herein. Moreover, these results are highly significant, demonstrating the relevance of NAT and advocating for its application on a global scale in blood management protocols. This development could be particularly beneficial for regions with a high viral infection prevalence, including many countries. Keywords: Nucleic acid amplification, Immunoassay, viral infection, blood bank.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call