Abstract

BackgroundMouse visual thalamus has emerged as a powerful model for understanding the mechanisms underlying neural circuit formation and function. Three distinct nuclei within mouse thalamus receive retinal input, the dorsal lateral geniculate nucleus (dLGN), the ventral lateral geniculate nucleus (vLGN), and the intergeniculate nucleus (IGL). However, in each of these nuclei, retinal inputs are vastly outnumbered by nonretinal inputs that arise from cortical and subcortical sources. Although retinal and nonretinal terminals associated within dLGN circuitry have been well characterized, we know little about nerve terminal organization, distribution and development in other nuclei of mouse visual thalamus.ResultsImmunolabeling specific subsets of synapses with antibodies against vesicle-associated neurotransmitter transporters or neurotransmitter synthesizing enzymes revealed significant differences in the composition, distribution and morphology of nonretinal terminals in dLGN, vLGN and IGL. For example, inhibitory terminals are more densely packed in vLGN, and cortical terminals are more densely distributed in dLGN. Overall, synaptic terminal density appears least dense in IGL. Similar nuclei-specific differences were observed for retinal terminals using immunolabeling, genetic labeling, axonal tracing and serial block face scanning electron microscopy: retinal terminals are smaller, less morphologically complex, and more densely distributed in vLGN than in dLGN. Since glutamatergic terminal size often correlates with synaptic function, we used in vitro whole cell recordings and optic tract stimulation in acutely prepared thalamic slices to reveal that excitatory postsynaptic currents (EPSCs) are considerably smaller in vLGN and show distinct responses following paired stimuli. Finally, anterograde labeling of retinal terminals throughout early postnatal development revealed that anatomical differences in retinal nerve terminal structure are not observable as synapses initially formed, but rather developed as retinogeniculate circuits mature.ConclusionsTaken together, these results reveal nuclei-specific differences in nerve terminal composition, distribution, and morphology in mouse visual thalamus. These results raise intriguing questions about the different functions of these nuclei in processing light-derived information, as well as differences in the mechanisms that underlie their unique, nuclei-specific development.

Highlights

  • Mouse visual thalamus has emerged as a powerful model for understanding the mechanisms underlying neural circuit formation and function

  • Classes of inhibitory nerve terminals were labeled with antibodies against either cytoplasmic enzymes required to generate GABA (i.e. Glutamate Decarboxylase 65 (GAD65) and Glutamate decarboxylase 67 (GAD67)) or synaptic vesicle associated transporters required to fill synaptic vesicles with GABA (i.e. Vesicular GABA Transporter (VGAT))

  • Terminal density was quantified by measuring the area fraction of each image containing GAD67-IR

Read more

Summary

Introduction

Mouse visual thalamus has emerged as a powerful model for understanding the mechanisms underlying neural circuit formation and function. Retinal and nonretinal terminals associated within dLGN circuitry have been well characterized, we know little about nerve terminal organization, distribution and development in other nuclei of mouse visual thalamus. The visual thalamus of rodents has served as an important model for exploring the cellular and molecular mechanisms that underlie neural circuit formation. The gain of retinogeniculate signal transmission is modulated by nonretinal inputs to dLGN. These nonretinal inputs arise from visual cortex, pretectum, brainstem, thalamic reticular nuclei, and local dLGN interneurons, and they far outnumber the more powerful retinal inputs [1,2]. Nonretinal inputs account for as much as 95% of the nerve terminals in dLGN [1,3,4,5,6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call