Abstract

Experiments and simulations show that when an initially defect-free rigid crystal is subjected to deformation at a constant rate, irreversible plastic flow commences at the so-called yield point. The yield point is a weak function of the deformation rate, which is usually expressed as a power law with an extremely small nonuniversal exponent. We reanalyze a representative set of published data on nanometer sized, mostly defect-free Cu, Ni, and Au crystals in light of a recently proposed theory of yielding based on nucleation of stable stress-free regions inside the metastable rigid solid. The single relation derived here, which is not a power law, explains data covering 15 orders of magnitude in timescales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call