Abstract

InAs quantum dots (QDs) are grown via molecular beam epitaxy on cross-hatch pattern (CHP) templates that result from lattice-mismatched epitaxy of In(x)Ga(1-x)As on (100)-GaAs substrates. Growth of InAs on low-(x = 0.10) and medium-(x = 0.13) mismatch CHPs with InAs thickness grading from sub- to beyond critical thickness show different stages of QD nucleation that is dictated mainly by surface steps. Tangential surface stress fields arising from the buried network of (110) misfit dislocations (MDs) at the InGaAs/GaAs interface are simulated in two dimensions and found to have a direct correlation to QD height at various locations, implying sequential QD nucleation at the surface intersection of the glide plane of dislocation T-section, cross-hatch intersection, threading dislocation, [1-10] MD line, and [110] MD line, followed by nucleation on the flat areas. Deviations from this nominal sequence is possible due to material anisotropy and are accounted for in the stress calculation by dislocation-specific scaling factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.