Abstract

GaP/Si heterostructures were grown by metal-organic chemical vapor deposition in which the formation of all heterovalent nucleation-related defects (antiphase domains, stacking faults, and microtwins) were fully and simultaneously suppressed, as observed via transmission electron microscopy (TEM). This was achieved through a combination of intentional Si(100) substrate misorientation, Si homoepitaxy prior to GaP growth, and GaP nucleation by Ga-initiated atomic layer epitaxy. Unintentional (311) Si surface faceting due to biatomic step-bunching during Si homoepitaxy was observed by atomic force microscopy and TEM and was found to also yield defect-free GaP/Si interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call