Abstract

Recent studies of inherited neurodegenerative disorders have suggested a linkage between the propensity toward aggregation of mutant protein and disease onset. This is particularly apparent for polyglutamine (polyQ) diseases caused by expansion of CAG-trinucleotide repeats. However, a quantitative framework for relating aggregation kinetics with molecular mechanisms of neurodegeneration initiation is lacking. Here, using the repeat-length-dependent age-of-onset in polyQ diseases, we derived a mathematical model based on nucleation of aggregation kinetics to describe genotype-phenotype correlations, and validated the model using both in vitro data and clinical data. Instead of describing polyQ aggregation kinetics with a derivative equation, our model divided age-of-onset (equivalent to the time required for aggregation) into two processes: nucleation lag time (a first-order exponential function of CAG-repeat length) and elongation time. With the exception of spinocerebellar ataxia (SCA) 3, the relation between CAG-repeat length and age-of-onset in all examined polyQ diseases, including Huntington's disease, dentatorubral-pallidoluysian atrophy and SCA1, -2, -6 and -7, could be well explained by three parameters derived from linear regression analysis based on the nucleated growth polymerization model. These parameters composed of probability of nucleation at an individual repeat, a protein concentration associated factor, and elongation time predict the overall features of neurodegeneration initiation, including constant risk for cell death, toxic polyQ species, main pathological subcellular site and the contribution of cellular factors. Our model also presents an alternative therapeutic strategy according to the distinct subcellular loci by the finding that nuclear localization of soluble mutant protein monomers itself has great impact on disease onset.

Highlights

  • Accumulation of misfolded proteins into protein aggregates is a hallmark of various aging-associated neurodegenerative diseases, including Alzheimer's, Parkinson's and polyglutamine diseases [1,2]

  • Nine inherited neurodegenerative disorders known as polyQ disease have been identified, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA) and spinocerebellar ataxia (SCA) 1–3, 6, -7 and -17 [3]

  • Validated the model using in vitro data In previous study, using the in vitro aggregation lag time of a series of polyQ peptides as a function of CAG size, described by Chen et al [9], we compared the relationship between median age-at-onset of HD and particular repeat sizes, demonstrating a significant linear correlation [12]

Read more

Summary

Introduction

Accumulation of misfolded proteins into protein aggregates is a hallmark of various aging-associated neurodegenerative diseases, including Alzheimer's, Parkinson's and polyglutamine (polyQ) diseases [1,2]. Nine inherited neurodegenerative disorders known as polyQ disease have been identified, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA) and spinocerebellar ataxia (SCA) 1–3, 6, -7 and -17 [3]. Despite the fact that an understanding of genotype-phenotype relationships might offer insights into the intrinsic toxicity of polyQ peptides and the contribution of tissue context factors, such correlational analyses have rarely been attempted for the various polyQ diseases [4,5,6] Those studies that have been performed have provided limited information because the parameters derived from a simple exponential regression analysis are highly variable. Rather than providing evidence that the genotype-phenotype relationship is modified by the nature of the protein encoded by each disease gene, this variability suggests deficiencies in the basic model describing the relationship

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call