Abstract

In this work, directional solidification was performed for multicrystalline silicon (mc-Si) ingot casting. The initial nucleation at the bottom of the silicon melt could be controlled by changing the cooling rate from 9 to 20μm/s. Metallographic microscope, X-Ray Diffraction (XRD), Microwave photoconductivity decay meter (μ-PCD) and four-point probe resistivity tester were used to investigate the microstructure, crystal orientation and electrical properties of the mc-Si ingots. The obtained results showed that cooling rate at 17μm/s is the optimum condition for the mc-Si ingots casting, under which the prepared ingot has lower dislocation density of 6×10-3 cm-2, better electrical properties, more uniformer resistivity distribution with an average value of 0.68 Ω×cm and higher minority carrier lifetime with a maximum value of 1.8 μs than that of in the other cooling rate conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.