Abstract

InN quantum dots (QDs) on GaN (0001) grown by metalorganic vapor phase epitaxy onto a sapphire substrate were studied by transmission electron microscopy (TEM). We found that the nucleation of InN QDs on GaN is directly related to the presence of threading dislocations (TDs) in the center of the QDs. The TEM analysis revealed that the TDs finish at the InN∕GaN interface and they are pure edge dislocations. Therefore, spiral growth models cannot explain nucleation of these QDs. Although controlling edge TDs constitute a possible approach to determine the QD density, a better approach may be an increase in the material growth rate in order to enter the diffusion-limited growth mode, where growth is not sensitive to surface heterogeneities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.