Abstract

Carbon pre-deposition onto the bare Si(001) surface has been shown to alter the (2×1) surface structure by formation of c(4×4) reconstructed domains containing a high C-concentration. Here we studied by ultra-high vacuum scanning tunneling microscopy the effect of this restructured surface on the initial stages of Ge nucleation by molecular beam epitaxy. Ge is found to form three-dimensional (3D) islands already at sub-monolayer coverage, resulting in a Volmer–Weber growth mode. Strain effects repel Ge adatoms from the C-rich domains, leading to enhanced Ge island formation on the C-free surface regions in between the c(4×4) areas. At a low growth temperature of 350°C, very small three-dimensional islands (3–5 nm in diameter, height 3–4 ML) with a density of nearly 1×10 12 cm −2 are obtained for only 0.5 ML of Ge. At higher substrate temperatures of approximately 500°C this three-dimensional growth mode is less pronounced, but still evident. The initially nucleated three-dimensional islands define the positions of the larger quantum dots at higher Ge coverage, that exhibit enhanced photoluminescence (PL) properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call