Abstract

An earlier dislocation model for predicting the grain size effect on deformation twinning in nanocrystalline (nc) face-centred-cubic (fcc) metals has been found valid for pure metals but problematic for alloys. The problem arises from the assumption that the stacking-fault energy (γSF) is twice the coherent twin-boundary energy (γfcc), which is approximately correct for pure fcc metals, but not for alloys. Here we developed a modified dislocation model to explain the deformation twinning nucleation in fcc alloy systems, where γSF ≠ 2γtwin. This model can explain the differences in the formations of deformation twins in pure metals and alloys, which is significant in low stacking-fault energy alloys. We also describe the procedure to calculate the optimum grain size for twinning in alloy systems and present a method to estimate γtwin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call