Abstract

Early transition metals ruthenium (Ru) and cobalt (Co) are of high interest as replacements for Cu in next-generation interconnects. Plasma-enhanced atomic layer deposition (PE-ALD) is used to deposit metal thin films in high-aspect-ratio structures of vias and trenches in nanoelectronic devices. At the initial stage of deposition, the surface reactions between the precursors and the starting substrate are vital to understand the nucleation of the film and optimize the deposition process by minimizing the so-called nucleation delay in which film growth is only observed after tens to hundreds of ALD cycles. The reported nucleation delay of Ru ranges from 10 ALD cycles to 500 ALD cycles, and the growth-per-cycle (GPC) varies from report to report. No systematic studies on nucleation delay of Co PE-ALD are found in the literature. In this study, we use first principles density functional theory (DFT) simulations to investigate the reactions between precursors RuCp2 and CoCp2 with Si substrates that have different surface terminations to reveal the atomic-scale reaction mechanism at the initial stages of metal nucleation. The substrates include (1) H:Si(100), (2) NHx-terminated Si(100), and (3) H:SiNx/Si(100). The ligand exchange reaction via H transfer to form CpH on H:Si(100), NHx-terminated Si(100), and H:SiNx/Si(100) surfaces is simulated and shows that pretreatment with N2/H2 plasma to yield an NHx-terminated Si surface from H:Si(100) can promote the ligand exchange reaction to eliminate the Cp ligand for CoCp2. Our DFT results show that the surface reactivity of CoCp2 is highly dependent on substrate surface terminations, which explains why the reported nucleation delay and GPC vary from report to report. This difference in reactivity at different surface terminations may be useful for selective deposition. For Ru deposition, RuCp2 is not a useful precursor, showing highly endothermic ligand elimination reactions on all studied terminations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.