Abstract

AbstractMagnesium rechargeable batteries (RMBs) are a promising alternative to lithium‐based ones. However, a major challenge in their advance concerns the development of aprotic electrolytes from which magnesium can be electrodeposited with high efficiency and without the formation of dendrites. Of note, the mechanism of the magnesium electrodeposition from aprotic electrolytes remains largely unexplored. In this study, we propose a combined experimental and theoretical approach based on the Scharifker‐Hills (S−H) mathematical model for the potentiostatic transients to analyse the nucleation and growth of magnesium during electrodeposition in order to shed light on the nucleation process and increase battery safety and cycle lifetime. The model is used to investigate the electrodeposition of magnesium from a Magnesocene (MgCp2)‐based electrolyte onto metal current substrates such as copper, nickel, aluminium and stainless steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.