Abstract

A systematic experimental study on the nucleation, crystallization and crystal-growth of one-component charged colloidal particles (122 nm diluted in pure water with densities between 0.5 μm −3 < n p < 5 μm −3) is present by means of time resolved static light scattering spectroscopy revealing the heterogeneous and homogenous nature of the crystallization. The interactions between the charged colloidal particles are sufficiently strong to cause crystallization which described in terms of Debye-Hückel approximation. Crystallization starts always with the formation of compressed structurally heterogeneous precursor domains. The results show that the heterogeneous nucleation at the cell walls starts simultaneously with the homogeneous bulk nucleation and the rate density of the heterogeneous nucleation appears slightly higher. It has been also found that the overall crystallization consists of at least a two-step nucleation process involving formation of early stage nuclei or crystal precursor then followed by the main crystallization. The induction time, the number density of nuclei and the growth rate of crystals, is strongly dependent on particle concentration and on whether the nucleation are homogeneous in cell center or heterogeneous on cell walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.