Abstract
Surface termination and interfacial interactions are critical for advanced solid-state quantum applications. In this paper, we demonstrate that atomic layer deposition (ALD) can both provide valuable insight on the chemical environment of the surface, having sufficient sensitivity to distinguish between the common diamond (001) surface termination types and passivate these interfaces as desired. We selected diamond substrates exhibiting both smooth and anomalously rough surfaces to probe the effect of morphology on ALD nucleation. We use high resolution in situ spectroscopic ellipsometry to monitor the surface reaction with sub-angstrom resolution, to evaluate the nucleation of an ALD Al2O3 process as a function of different ex and in situ treatments to the diamond surface. In situ water dosing and high vacuum annealing provided the most favorable environment for nucleation of dimethylaluminum isopropoxide and water ALD. Hydrogen termination passivated both smooth and rough surfaces while triacid cleaning passivated the smooth surface only, with striking effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.