Abstract

The equilibrium crystal structure of LnMnO3 (Ln: lanthanide) has been reported to be orthorhombic when La3+ to Dy3+ are used as Ln3+, and hexagonal when Ho3+ to Lu3+ are used. Whereas Kumar et al. reported a two-phase structure of orthorhombic and hexagonal phases is formed in DyMnO3 when it was solidified from the undercooled melt under containerless state. The reason for the formation of the two-phase structure was not thoroughly addressed and discussed. We investigated the formation mechanism for the two-phase structure from the undercooled melt of DyMnO3 in detail. As a result, the surface morphology, microstructure, and crystal structure of the samples, in which the nucleation was forced at a predetermined temperature with a Mo needle, indicated that the hexagonal and orthorhombic phases are dominant at high and low temperatures, respectively. When the sample was quenched from below 1670 K in a water bath, as-solidified sample consisted of h-DyMnO3 and o-DyMnO3. Whereas a single phase of h-DyMnO3 was obtained in the sample quenched from above 1670 K. This phenomenon can be quantified in terms of nucleation-rate determined phase selection. That is, the activation energy for forming a critical nucleus calculated based on the model of the crystal-melt interface proposed by Turnbull and Speapen suggests that the o-DyMnO3 phase can be heterogeneously nucleated on the interface of the initially formed h-DyMnO3 phase. This Paper was Originally Published in Japanese in J. Japan Inst. Met. Mater. 85 (2021) 155–161. The abstract and captions of Figs. 1–10 are modified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.