Abstract
We study conditions under which carbon clusters of different sizes form and stabilize. {We describe an approach to equilibrium by simulating tenuous carbon gas dynamics to long times.} First, we use reactive molecular dynamics simulations to describe the nucleation of long chains, large clusters, and complex cage structures in carbon and hydrogen rich interstellar gas phases. We study how temperature, particle density, presence of hydrogen, and carbon inflow affect the nucleation of molecular moieties with different characteristics, in accordance with astrophysical conditions. We extend the simulations to densities which are orders of magnitude lower than current laboratory densities, to temperatures relevant to circumstellar environments of planetary nebulae, and to longtime (microsecond) formation timescales. We correlate cluster size distributions from dynamical simulations with thermodynamic equilibrium intuitions, where at low temperatures and gas densities, entropy plays a significant role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.