Abstract

A chemical approach to the deposition of thin films on solid surfaces is highly desirable but prone to affect the final properties of the film. To better understand the origin of these complications, the initial stages of the atomic layer deposition of titania films on silica mesoporous materials were characterized. Adsorption-desorption measurements indicated that the films grow in a layer-by-layer fashion, as desired, but initially exhibit surprisingly low densities, about one-quarter of that of bulk titanium oxide. Electron microscopy, X-ray diffraction, UV/visible, and X-ray absorption spectroscopy data pointed to the amorphous nature of the first monolayers, and EXAFS and 29Si CP/MAS NMR results to an initial growth via the formation of individual tetrahedral Ti-oxide units on isolated Si-OH surface groups with unusually long Ti-O bonds. Density functional theory calculations were used to propose a mechanism where the film growth starts at the nucleation centers to form an open 2D structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.